
What’s my type?

Examining how model checking and type systems may

complement and help each other

Background

There has been an explosion in where computer systems are found. They are everywhere
and they control more and more of our lives, directly or indirectly. A couple of examples of
this are power plants, planes, sewage systems, medical devices, and spacecrafts. All of these
systems use a computer at some point, usually to control a part of them. The systems given
as examples are all critical in the sense that a failure would be catastrophical, potentially
resulting in the loss of lives.

For certain critical systems, model checking is a way of guaranteeing that the software
works as expected by exhaustively testing every possible state the modelled program or
protocol could be in. However, model checking is also slow and often runs into the “State
Explosion Problem” [8] where the model to be checked results in many more states than
could physically be stored, even on modern hardware. This problem has been, and still is,
studied in great detail [2, 3, 4, 5, 6, 7] but the most common solution remains to simplify the
actual model into smaller submodels (e.g. [9]) which can result in problems going unnoticed
due to it only emerging when the system as a whole is considered.

Type systems allow us to formulate the inputs and outputs of programs in a way that
the compiler can then check that we are indeed using the right things. This allows us to be
confident that the program we have written is correct with respect to the defined types. A
simple example (from [1]) models a door that can be opened, closed, and where the doorbell
can only be rung if the door is closed:

data DoorState = DoorClosed | DoorOpen

data DoorCmd : Type -> DoorState -> DoorState -> Type

where

Open : DoorCmd () DoorClosed DoorOpen

Close : DoorCmd () DoorOpen DoorClosed

RingBell : DoorCmd () DoorClosed DoorClosed

Pure : ty -> DoorCmd ty state state
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(>>=) : DoorCmd a state1 state2 ->

(a -> DoorCmd b state2 state3) ->

DoorCmd b state1 state3

Given the types and actions described above, a program which uses the types and type-
checks must correctly follow the ‘protocol’ of operating the door. The advantage to using
types and type-checking is that useful programs can be modelled and type-checked (proven
to be valid) without running into the state explosion problem.

However, it is not known whether the types correctly model the problem we are trying
to solve. The programs may type-check but if the types themselves do not capture the
problem correctly, then that is never caught and the programs are still invalid (despite the
type-checker not knowing so).

Proposal

The aim of this research project would be to investigate how formal methods and model
checking could complement or assist dependent types and functional programming and vice
versa.

As discussed in the background section above, there is no guarantee that the types
correctly model the desired problem. Given that model checking can be used for checking
that protocols are valid (e.g. that it is possible to reach a certain state under the current
protocol), it is possible that model checking could also be used to answer the question “Do
my types correctly model my problem?” The door example could be modelled in Spin with
the following Promela code:

mtype:state = { DoorOpen , DoorClosed };

mtype:action = { Open , Close , RingBell };

chan c = [0] of { mtype:action };

mtype:state doorstate;

init

{

do

:: doorstate = DoorOpen; break;

:: doorstate = DoorClosed; break;

od

run SENDER ();

run RECEIVER ();

}

proctype SENDER ()

{

do

:: c!Open

:: c!Close
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:: c!RingBell

od

}

proctype RECEIVER ()

{

do

:: (c?Close && doorstate == DoorOpen) ->

doorstate = DoorClose;

:: (c?Open && doorstate == DoorClosed) ->

doorstate = DoorOpen;

:: (c?RingBell && doorstate == DoorClosed) ->

doorstate = DoorClose;

od

}

With this model in Promela, we could then use Linear Temporal Logic and Spin to examine
questions like “Is it always possible to open the door?” or “Can the door infinitely often be
in the DoorOpen state?”

Initially, an investigation could be conducted into how type checking dependent types
and model checking might overlap. For example: for verifying that the index of a fixed-
length array does not go out of bounds, how does a dependent type system model and verify
the indices, and how would this be done in a model checker like Spin?

Based on the information obtained from this investigation, a framework for model check-
ing types could be drafted, discussing potential compromises that may need to be made.
This framework could then either be implemented as a formal model in an existing mod-
elling language, e.g. Promela, or it may prove necessary to build a custom model checker
(or customise an existing one).

Overall, the aim of the project would be to explore how model checking dependent types
could strengthen (or even prove) that the types capture the scenario the user is trying to
model correctly. Additionally, going the other way, the aim would also be to explore how
dependent types can help guarantee that the programs written are correct, instead of having
to rewrite (often in a significantly simplified form) and check them in a formal modelling
language.
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